home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
USA Bestseller
/
USA BESTSELLER Vol 1-95 (Hepp-Computer)(1995).iso
/
e235
/
include
/
shapes.old
< prev
next >
Wrap
Text File
|
1993-05-26
|
4KB
|
193 lines
// Persistence Of Vision Raytracer 2.0
// Historical include file.
// Old standard shapes include file
// Included for historical comparison.
// Some shapes were changed
// for POV-Ray Version 1.0.
#declare Shapes_Old_Temp = version
#version 2.0
#declare Sphere =
quadric
{<1, 1, 1>,
<0, 0, 0>,
<0, 0, 0>, -1
}
#declare Cylinder_X =
quadric
{<0, 1, 1>,
<0, 0, 0>,
<0, 0, 0>, -1
}
#declare Cylinder_Y =
quadric
{<1, 0, 1>,
<0, 0, 0>,
<0, 0, 0>, -1
}
#declare Cylinder_Z =
quadric
{<1, 1, 0>,
<0, 0, 0>,
<0, 0, 0>, -1
}
#declare Cone_X =
quadric
{<-1, 1, 1>,
< 0, 0, 0>,
< 0, 0, 0>, 0
}
#declare Cone_Y =
quadric
{<1, -1, 1>,
<0, 0, 0>,
<0, 0, 0>, 0
}
#declare Cone_Z =
quadric
{<1, 1,-1>,
<0, 0, 0>,
<0, 0, 0>, 0
}
// The Plane_nn objects were formerly defined as quadrics but now can
// be redefined as plane because of v1.5 no longer requires object identifiers
// to be a specific type.
#declare Plane_YZ = plane {x,0}
#declare Plane_XZ = plane {y,0}
#declare Plane_XY = plane {z,0}
/* y^2 + z^2 - x = 0 */
#declare Paraboloid_X =
quadric
{< 0, 1, 1>,
< 0, 0, 0>,
<-1, 0, 0>, 0
}
/* x^2 + z^2 - y = 0 */
#declare Paraboloid_Y =
quadric
{<1, 0, 1>,
<0, 0, 0>,
<0, -1, 0>, 0
}
/* x^2 + y^2 - z = 0 */
#declare Paraboloid_Z =
quadric
{<1, 1, 0>,
<0, 0, 0>,
<0, 0, -1>, 0
}
/* y - x^2 + z^2 = 0 */
#declare Hyperboloid =
quadric
{<-1, 0, 1>,
< 0, 0, 0>,
< 0, 1, 0>, 0
}
#declare Hyperboloid_Y =
quadric /* Vertical hyperboloid */
{<1, -1, 1>, /* */
<0, 0, 0>, /* \ / */
<0, 0, 0>, -1 /* Like this: ) ( */
} /* / \ */
// This primitive used to be an intersection of six planes. For speed,
// it is now a box and nothing else.
#declare Cube = box { <-1, -1, -1>, <1, 1, 1> }
#declare Tetrahedron =
intersection
{plane {-y,1}
plane { z,1 rotate <-30, 0, 0>}
plane { x,1 rotate < 0, 30, 30>}
plane {-x,1 rotate < 0,-30,-30>}
}
#declare X_Disk = /* Capped cylinder, Length in x axis */
intersection
{object {Cylinder_X}
plane { x,1}
plane {-x,0}
}
#declare Y_Disk = /* Capped cylinder, Length in y axis */
intersection
{object {Cylinder_Y}
plane { y,1}
plane {-y,0}
}
#declare Z_Disk = /* Capped cylinder, Length in z axis */
intersection
{object {Cylinder_Z}
plane {-z,1}
plane { z,0}
}
#declare Hexagon = /* Hexagonal Solid, axis along x */
intersection /* Rotate 90 in z axis to stand up */
{plane {z,1}
plane {z,1 rotate < 60, 0, 0>}
plane {z,1 rotate <120, 0, 0>}
plane {z,1 rotate <180, 0, 0>}
plane {z,1 rotate <240, 0, 0>}
plane {z,1 rotate <300, 0, 0>}
plane {x,1}
plane {-x,1}
}
#declare Rhomboid = /* Three Dimensional 4-Sided Diamond */
intersection
{plane {-x,1 rotate <0, 0, -30>}
plane { x,1 rotate <0, 0, -30>}
plane { z,1}
plane {-z,1}
plane { y,1}
plane {-y,1}
}
#declare Square_X = /* Scale-able plane in x */
union
{triangle {<0, 1, -1>, <0, -1, 1>, <1, 1, 1>}
triangle {<0, 1, -1>, <0, -1, 1>, <0,-1,-1>}
}
#declare Square_Y = /* Scale-able plane in y */
union
{triangle {<-1, 0, 1>, <1, 0, -1>, < 1, 0, 1>}
triangle {<-1, 0, 1>, <1, 0, -1>, <-1, 0, -1>}
}
#declare Square_Z = /* Scale-able plane in z */
union
{triangle {<-1, 1, 0>, <1, -1, 0>, <-1, -1, 0>}
triangle {<-1, 1, 0>, <1, -1, 0>, < 1, 1, 0>}
}
#declare Pyramid =
union
{triangle {<-1, 0, -1>, <+1, 0, -1>, <0, 1, 0>}
triangle {<+1, 0, -1>, <+1, 0, +1>, <0, 1, 0>}
triangle {<-1, 0, +1>, <+1, 0, +1>, <0, 1, 0>}
triangle {<-1, 0, +1>, <-1, 0, -1>, <0, 1, 0>}
object {Square_Y}
}
#version Shapes_Old_Temp